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FOREWORD

This report presents data for the dependence on applied stress and
temperature of pitch-based graphite fiber bundles, obtained through a novel
technique of laser-generated ultrasound. Such data are indispensable for
describing the effects of temperature on composites reinforced by these
fibers and should assist in the selection of constituents for making 0
composites of high thermal stability.

This work was performed during the period of September 1986 to February
1987. The technical program monitor is Dr. John M. Liu.
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INTRODUCTION

The existence of carbon fibers has been known for many years. They were
used for filaments for incandescent lamps in the latter part of the 19th
century. The first major effort to develop high strength carbon fibers,
however, was not undertaken until the early 1950's at Wright Patterson Air Force
Base, Dayton, Ohio. 1 Such fibers are now important in many advanced technical
applications, especially in aerospace composite materials for which the high
specific modulus is valuable. Care must be taken in the design of these
composites, as fiber and matrix will have significantly different properties.
The fibers exhibit nonlinear elasticity, 2 as well as a negative coefficient of
thermal expansion parallel to the fiber axis. 3 These factors can result in
important changes in the properties of a composite subjected to wide variations
in temperature. For example, the Young's modulus along the fiber direction in a
uniaxial lamina can increase rather than decrease with rising temperature.4 The
stresses that are generated in the composite5 can lead to yielding at the fiber-
matrix interface, or possibly in the matrix or the fibers themselves.
Furthermore, these effects will lead to variations in both the sign and
magnitude of the coefficient of thermal expansion in the fiber direction,
depending on the thermal history of the composite.

6

There are two recently published studies on the nonlinear elasticity of
pitch-based 7 and PAN-based8 graphite fibers. In Reference 8, the results for a
single filament and an impregnated tow have been used for interpreting the
nonlinear behavior in composites reinforced by these fibers.

A thorough understanding of the nonlinear elastic properties of the
fibers, as well as the thermal effects, is vital to the design of composi.tes
that will be stable over a wide temperature range. The considerations above are
important for structures ranging in size from space stations and aircraft to
circuit boards. Nevertheless, there has been no systematic investigation of
these effects. This report summarizes the results of research on a series of
pitch-based carbon fibers by laser-generated ultrasound. The Young's modulus is
determined as a function of applied static tensile stress over a wide range of
temperatures for the fibers. The goal is to provide data on the nonlinear
elastic property of the graphite fibers and its temperature dependence, as well
as to explain these effects in terms of the internal structure of the fibers.
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EXPERIMENTAL PROCEDURES

The experimental arrangement is shown in Figure 1. A pulsed laser is used
to generate stress waves in the fiber bundle by a rapid deposition of energy in
a manner similar to that reported previously for fibers at room temperature
without static stress. 9 A Nd-Yag laser is used to produce single pulses of
about 15 ns duration and about 20 mJ of energy. The light (532 nm) is focused
on the fiber, which is enclosed in a temperature cell. The fiber is mounted
vertically, perpendicular to the direction of the laser beam. The ends of the
fiber bundle are sandwiched between cardboard squares held together by epoxy.
It is held at one end by a clamp. A hole is punched in the bottom square to
allow tensile stress to be applied by the addition of weight there.

The stress is determined by dividing force by the cross-sectional area.
Force is calculated from the mass loaded onto the fiber bundle. The cross-
sectional area is found by dividing the mass, M, of a bundle of fibers of
length, 1, by the density and the length. A piezoelectric transducer is clamped
near the top of the bundle to detect the acoustic wave generated by the
interaction of the laser light with the bundle. (Typically, 2000 fiber bundles
were used.) A sampling oscilloscope is triggered when the laser is fired by the
signal from a photodiode placed near the bundle and facing the beam. The signal
from the transducer is amplified, filtered, and recorded at either a 20- or a
50-ns sampling period. From this, a time of flight may be recorded as the
difference in time between the triggering of the photodiode and the arrival of
the acoustic wave at the transducer. A differential measurement is taken by
dividing the difference between two distances from laser impact to transducer by
the difference in the corresponding times of flight (i.e., velocity, C- AlI/At).
As the ultrasonic wavelength is very large compared to the diameter of the
bundle, Young's modulus, E, is equal to the density of the fibers times the
square of the ultrascnic velocity. The differential measurement will reduce the
error from both end effects and temperature gradients.

Some simple steps must be taken to ensure accurate results. The fibers
must be long enough to eliminate interference in the signal from end
reflections. The fibers must be straight, unbroken, and of equal length. The
standard deviation for measurements of the modulus is about 3 GPa. This number
is comparable to the limit of resolution, which varies a little depending on the
sampling rate used and the modulus of the fiber. Over the length of sample
used, i, the maximum temperature differences were +50C at 2850C, less than 10 C
at 600 C, and O°C at room temperature. The fibers were pitch-based P25, ?55,
275, ?100, and ?120 that were manufactured by the Union Carbide Corporation.

V.
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RESULTS AND DISCUSSION

Table 1 lists the results obtained at ambient temperature by both the
ultrasonic method and by conventional mechanical testing. Within the limits of
error for the two techniques, the results are in agreement. Interestingly, the
ultrasonic velocity measured for P120, 19.5 km s-1 , is greater than that
reported for diamond.1 0

Figures 2-6 show the values of Young's modulus plotted as a function of
static tensile stress at 25, 60, 120, 210 and 285 0 C, respectively. The data
points are averages of several measurements. All the data are reversible for
stress and temperature. In general, the nonlinear elasticity decreases with
increasing initial modulus in the series from P25 to P120. As a result, the
fractional change in the initial modulus Eo, with respect to stress, evaluated
at a stress of 10 MPa for each of the fibers, decreases with increasing initial
modulus (as shown in Figure 7). This quantity is one of those that determine
the unusual increase with temperature of the axial Young's modulus of a uniaxial
lamina.

4

When the temperature is increased, the modulus decreases as shown in
Figure 8 for zero tensile stress and in Figure 9 for 100 MPa tensile stress.The rate of this decrease is larger for all the fibers at temperatures between

about 30 and 150 0C rather than at the higher temperatures. The fractional
change in the initial modulus with respect to temperature decreases with
increasing initial modulus (as shown in Figure 10). This temperature derivative
exhibits a dependence on the initial modulus of the fibers that is similar to
that exhibited by the stress derivative (as shown previously in Figure 7). This
derivative is another of the 2uantities that determine the unusual thermal
behavior of uniaxial laminae. The stress derivative of each of the fibers is a
function of temperature. The derivatives at room temperature and at 285 0C are
significantly different for the fibers of low modulus, but this difference
diminishes progressively as the Young's modulus of the fiber increases, as shown
in Figure 11.

In general, the initial modulus in the series of fibers studied can be
associated with the extent of alignment of the closed-pack planes in graphite
towards the fiber axis. 11  Crystal size in the direction of the fiber axis
might also play a role. Change in crystal orientation with static tensile
stress no doubt contributes to the nonlinear elasticity.2 However, this idea
has not been examined systematically for a series of fibers such as the present
ones. The sharp increase in modulus with stress, such as that observed at 300C
for P25 in Figure 2, has been attributed to the motion of dislocations in the
basal plane. 2  The large decrease in the modulus of P55 between 60 and 120 0C
(Figure 8) together with the change in the nature of the curve for this fiber
between 60 and 120 0C is consistent with the dislocation hypothesis, as are the

3
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changes in the initial modulus versus temperature shown in Figure 8. The .0

greater slopes of the curves in the 30 to 1500C range are consistent with the
effect of dislocation motion on a modulus determined ultrasonically. 12

However, this hypothesis too has not been examined for a series of fibers such
as the present ones. In fact, it has been suggested that the initial portion of
a curve like that for P25 in Figure 2 or P55 in Figure 4 results from the fibers
not being straight. 13 To address such questions, X-ray diffraction measurements
will be used to determine orientation, size, and crystal modulus in the axial
direction, and if possible, the degree of imperfection in the crystals. The
ultrasonic measurements of Young's modulus will also be extended to higher and
lower temperatures.

J.%
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CONCLUSION

A new method has been developed to measure Young's modulus for graphite
and other fibers over wide ranges of temperature and static tensile stress. The
method is based on laser-generated ultrasound. It was used to measure the
Young's modulus of pitch-based graphite fibers (P25, P55, P75, P100, and P120)
from 250 C to 2850 C with applied static tensile stresses from zero to about 170
MPa. The fibers exhibit nonlinear elasticity which varies in character with the
fiber, the temperature, and the applied stress. The nonlinear elasticity
combined with the negative axial expansion coefficient of the fibers could lead
to some unusual properties in uniaxial laminae, and must be considered in the
design of composites. Further sonic measurements over a wider range of
temperatures and X-ray diffraction measurements are planned in order to
determine the origin of the effects.

5
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TABLE 1. YOUNG'S MODULUS OF PITCH-BASED GRAPHITE FIBERS DETERMINED
BY LASER-GENERATED ULTRASOUND AND BY MECHANICAL TESTING

Approximate Ultrasonic Ultrasonic Test Machine
Density Frequency Velocity Modulus Modulus

Sample (M m -3 ) (MHz) (km s-1) (GPa) (GPa)

P-25 1.90* 0.58 9.36 166 160* 0
P-55 2.00* 0.61 13.3 354 380* .0
P-75 2.00* 0.51 15.5 480 520*
P-100 2.15* 0.65 18.2 712 724*

P-120 2.18* 0.66 19.5 830 827*

*Values from manufacturer's data sheet ,,;
V

17
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